

International Journal of Pharma Insight Studies

Advanced Pharmaceutical Nanotechnology Platforms: Innovative Approaches for Controlled, Targeted, and Sustained Drug Release in Contemporary Therapeutic Applications

Dr. Alexander C Thornton

Department of Pharmaceutical Sciences, University of Iowa, Iowa City, IA, USA

* Corresponding Author: **Dr. Alexander C Thornton**

Article Info

ISSN (online): 3107-393X

Volume: 03

Issue: 01

Received: 03-11-2025

Accepted: 05-12-2025

Published: 02-01-2026

Page No: 01-07

Abstract

Pharmaceutical nanotechnology has revolutionized drug delivery by enabling precise control over therapeutic agent distribution, release kinetics, and site-specific targeting. Conventional drug formulations often suffer from poor bioavailability, rapid clearance, systemic toxicity, and inability to reach specific therapeutic targets, necessitating the development of advanced nanocarrier systems. This review examines emerging trends in pharmaceutical nanotechnology focusing on controlled, targeted, and sustained drug release applications. Various nanocarrier platforms including polymeric nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, carbon-based nanomaterials, and inorganic nanoparticles are discussed with emphasis on their design principles and therapeutic applications. The mechanisms underlying controlled release kinetics, active and passive targeting strategies, and sustained delivery approaches are critically analyzed. Significant advances in cancer chemotherapy, gene therapy, antimicrobial treatments, and management of chronic diseases demonstrate the clinical potential of these nanotechnological platforms. Despite remarkable progress, challenges including scalability, regulatory approval, long-term safety profiles, and manufacturing reproducibility remain substantial barriers to clinical translation. Future perspectives highlight the integration of stimuli-responsive systems, personalized nanomedicine, and artificial intelligence-guided design as promising directions. This review provides a comprehensive overview of current pharmaceutical nanotechnology landscape and identifies critical research priorities for advancing controlled and targeted drug delivery systems toward widespread clinical implementation.

Keywords: Pharmaceutical Nanotechnology, Nanocarrier Systems, Controlled Drug Release, Targeted Delivery, Sustained Release, Nanomedicine

1. Introduction

Furthermore, many potent therapeutic compounds possess unfavorable physicochemical properties including poor aqueous solubility, chemical instability, and inability to traverse biological barriers, rendering them unsuitable for clinical use despite promising pharmacological activity [4].

Nanocarrier-based drug delivery systems address these challenges through multiple mechanisms. By encapsulating therapeutic agents within nanoscale carriers ranging from 1 to 1000 nanometers, pharmaceutical scientists can precisely control drug release kinetics, enhance cellular uptake, protect sensitive molecules from degradation, and direct therapeutics to specific anatomical sites or cellular compartments [5, 6].

The unique physicochemical properties of nanocarriers including high surface area-to-volume ratios, tunable surface characteristics, and capacity for multifunctional modification enable unprecedented control over pharmacokinetic and pharmacodynamic parameters [7]. The evolution of pharmaceutical nanotechnology has been particularly significant in oncology, where enhanced permeability and retention effects facilitate preferential accumulation of nanocarriers in tumor tissues [8]. Beyond passive targeting, surface functionalization with targeting ligands enables active recognition of specific cellular receptors, further enhancing therapeutic specificity while minimizing off-target effects [9]. Additionally, stimuli-responsive nanocarriers capable of triggered release in response to pathological microenvironments represent a sophisticated approach to precision medicine [10].

This review examines emerging trends in pharmaceutical nanotechnology with specific focus on controlled, targeted, and sustained drug release applications. We critically analyze major nanocarrier platforms, elucidate mechanisms governing release kinetics and targeting strategies, discuss therapeutic applications across disease categories, and identify challenges and future directions in translating these technologies to clinical practice.

2. Nanocarrier-Based Drug Delivery Systems

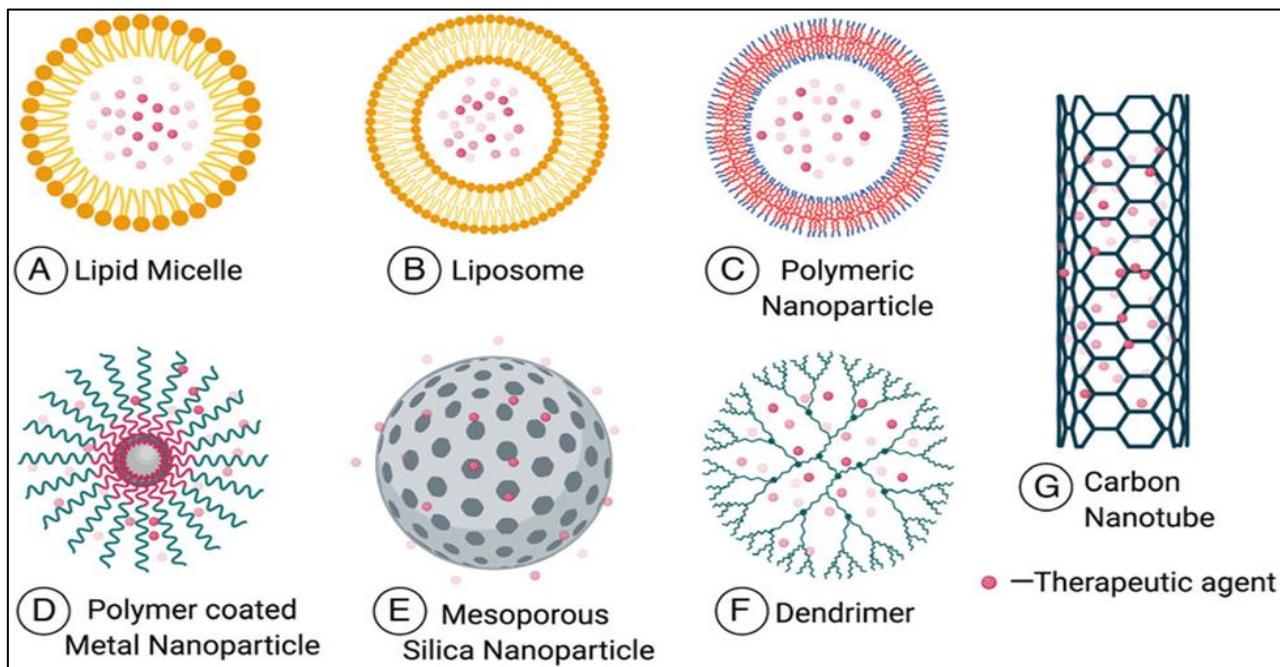
2.1. Polymeric Nanoparticles

Polymeric nanoparticles constitute a versatile class of drug carriers fabricated from biodegradable or biocompatible polymers. Poly(lactic-co-glycolic acid) (PLGA) represents the most extensively investigated polymer for pharmaceutical applications due to FDA approval, predictable degradation kinetics, and compatibility with diverse therapeutic agents [11]. PLGA nanoparticles enable sustained drug release through controlled polymer erosion and drug diffusion, with release profiles tailored by adjusting polymer molecular weight, lactide-to-glycolide ratios, and nanoparticle architecture [12]. Other synthetic polymers including polycaprolactone, polyethyleneimine, and polymethacrylates offer distinct advantages for specific applications [13].

Natural polymers such as chitosan, alginate, and gelatin provide biocompatibility, biodegradability, and intrinsic biological activities. Chitosan nanoparticles exhibit mucoadhesive properties and permeation enhancement capabilities, facilitating oral and nasal drug delivery [14]. Albumin-based nanoparticles leverage endogenous transport mechanisms, exemplified by nab-paclitaxel which exploits albumin receptor-mediated transcytosis across endothelial barriers [15]. Polymeric micelles formed through self-assembly of amphiphilic block copolymers create

hydrophobic cores suitable for encapsulating poorly soluble drugs while hydrophilic coronas enhance circulation stability [16].

2.2. Lipid-Based Nanocarriers


Liposomes represent the most clinically successful nanocarrier platform, with multiple formulations approved for therapeutic use. These spherical vesicles composed of phospholipid bilayers encapsulate hydrophilic drugs in aqueous cores while accommodating lipophilic compounds within bilayers [17]. PEGylated liposomes (stealth liposomes) incorporate polyethylene glycol chains that reduce opsonization and extend circulation half-life, enabling preferential tumor accumulation [18]. Doxil, the first nanomedicine approved by FDA, exemplifies clinical translation of liposomal technology in cancer chemotherapy [19].

Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) provide alternative lipid-based platforms. SLNs consist of solid lipid matrices stabilized by surfactants, offering controlled release characteristics and protection of labile drugs from degradation [20]. NLCs incorporate liquid lipids within solid matrices, creating imperfect crystal structures that enhance drug loading capacity and prevent drug expulsion during storage [21]. These lipid nanocarriers demonstrate excellent tolerability, scalability for industrial production, and versatility across administration routes.

2.3. Emerging Nanocarrier Platforms

Dendrimers represent highly branched, monodisperse macromolecular architectures with well-defined structure and multivalent surface groups. Their precisely controlled architecture enables predictable pharmacokinetics and high drug loading through encapsulation or covalent conjugation [22]. Surface functionalization with targeting moieties and therapeutic agents creates multifunctional theranostic platforms [23].

Carbon-based nanomaterials including carbon nanotubes, graphene oxide, and fullerenes exhibit unique physicochemical properties applicable to drug delivery. Their high surface area facilitates substantial drug loading while intrinsic optical and thermal properties enable combined therapeutic and diagnostic applications [24]. Mesoporous silica nanoparticles possess ordered porous structures with tunable pore dimensions, enabling high drug loading and controlled release through pore modifications [25]. Metallic and metal oxide nanoparticles including gold, silver, iron oxide, and quantum dots offer multifunctional capabilities integrating drug delivery with imaging and hyperthermia [26].

Fig 1: Schematic representation of various nanocarrier platforms commonly used in drug delivery systems.

Table 1: Major Nanocarrier Systems and Their Applications in Drug Delivery

Nanocarrier Type	Size Range (nm)	Key Advantages	Primary Applications	Representative Examples
Liposomes	50-500	Biocompatible, versatile drug loading, clinically approved	Cancer, fungal infections, vaccines	Doxil, AmBisome, Onpattro
PLGA Nanoparticles	10-200	Biodegradable, sustained release, FDA-approved polymer	Cancer, inflammation, vaccines	Eligard, investigational formulations
Solid Lipid Nanoparticles	50-1000	Stable, scalable, controlled release	Dermal delivery, oral delivery	Investigational formulations
Polymeric Micelles	10-100	High drug loading, tumor targeting	Cancer chemotherapy	Genexol-PM, NK105
Dendrimers	1-15	Precise structure, multivalent functionality	Gene delivery, targeted therapy	VivaGel, investigational agents
Albumin Nanoparticles	100-200	Natural transport mechanisms, non-toxic	Cancer therapy	Abraxane
Mesoporous Silica	50-300	High loading capacity, controlled release	Cancer, antimicrobials	Investigational formulations
Carbon Nanotubes	1-100 (diameter)	High drug loading, multifunctional	Cancer, gene delivery	Preclinical studies

3. Mechanisms of Controlled, Targeted, and Sustained Release

3.1. Controlled Release Kinetics

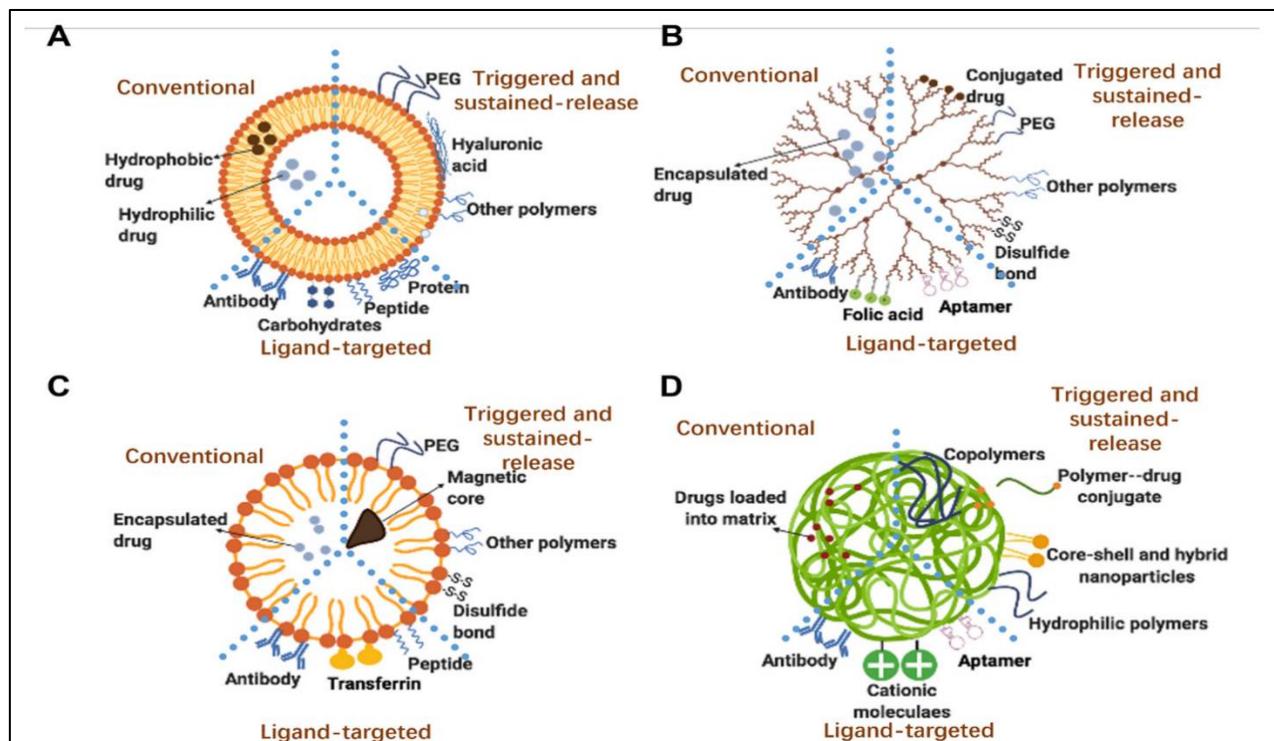
Controlled drug release from nanocarriers occurs through multiple mechanisms including diffusion, polymer degradation, solvent penetration, and erosion. Diffusion-controlled systems release drugs through concentration gradient-driven transport across polymer matrices or lipid bilayers [27]. Release rates depend on drug-carrier interactions, nanocarrier composition, and environmental conditions. Degradation-controlled systems rely on hydrolytic or enzymatic breakdown of carrier materials, with release kinetics governed by polymer degradation rates [28]. Mathematical modeling of release kinetics employs zero-order, first-order, Higuchi, and Korsmeyer-Peppas models to characterize and predict drug release profiles. Zero-order kinetics provide constant release rates ideal for maintaining steady-state therapeutic concentrations, while first-order kinetics exhibit concentration-dependent release typical of diffusion-controlled systems [29]. Stimuli-responsive nanocarriers incorporate materials sensitive to pH, temperature, redox potential, or specific enzymes, enabling

triggered release in pathological microenvironments [30]. Tumor acidic pH and elevated glutathione concentrations represent exploitable triggers for cancer-specific drug release.

3.2. Targeting Strategies

Passive targeting exploits pathophysiological characteristics of diseased tissues to achieve preferential nanocarrier accumulation. The enhanced permeability and retention (EPR) effect in solid tumors results from defective vascular architecture and impaired lymphatic drainage, allowing nanocarriers within specific size ranges (typically 10-200 nm) to extravasate and accumulate in tumor tissues [31]. However, EPR effect heterogeneity across tumor types and individual patients necessitates complementary targeting approaches.

Active targeting employs surface-conjugated ligands that recognize specific receptors overexpressed on target cells. Antibodies, peptides, aptamers, small molecules, and carbohydrates serve as targeting moieties [32]. Folate receptors overexpressed in various cancers facilitate folate-conjugated nanocarrier uptake through receptor-mediated endocytosis


[33]. Transferrin, RGD peptides, and hyaluronic acid represent alternative targeting ligands exploiting specific receptor profiles. Dual-targeting strategies combining multiple ligands enhance specificity and overcome tumor heterogeneity [34].

3.3. Sustained Delivery Approaches

Sustained drug delivery maintains therapeutic concentrations over extended periods, reducing dosing frequency and improving patient compliance. Nanocarrier design parameters including polymer selection, drug loading methods, particle size, and surface modifications determine release duration [35]. Depot formulations create local drug

reservoirs enabling prolonged release following single administration. PLGA microspheres achieve sustained release over weeks to months through controlled polymer degradation [36].

Surface modification with polyethylene glycol (PEGylation) reduces protein adsorption and macrophage uptake, extending circulation time from minutes to hours or days [37]. However, accelerated blood clearance following repeated administration and reduced cellular uptake represent PEGylation limitations. Alternative stealth coatings including zwitterionic polymers and biomimetic cell membrane camouflage provide improved circulation persistence without accelerated clearance phenomena [38].

Fig 2: Overview of Pharmaceutical Nanocarriers for Controlled, Targeted, and Sustained Drug Delivery

4. Therapeutic Applications

4.1. Cancer Therapy

Pharmaceutical nanotechnology has profoundly impacted oncology through improved chemotherapeutic delivery and development of novel treatment modalities. Nanocarriers protect cytotoxic agents from premature degradation, modify biodistribution to favor tumor accumulation, and reduce systemic toxicity [39]. Liposomal doxorubicin (Doxil) demonstrates reduced cardiotoxicity compared to free doxorubicin while maintaining therapeutic efficacy [40]. Albumin-bound paclitaxel (Abraxane) eliminates toxic solubilizing agents required for conventional paclitaxel formulation and enhances tumor penetration through albumin transport mechanisms [41].

Combination nanomedicines co-encapsulating multiple chemotherapeutic agents enable synergistic effects and overcome multidrug resistance. Ratiometric loading of drugs with complementary mechanisms optimizes therapeutic outcomes [42]. Nanocarrier-mediated gene therapy delivers nucleic acids including siRNA, miRNA, and plasmid DNA for cancer treatment. Lipid nanoparticles effectively protect nucleic acids from nuclease degradation and facilitate intracellular delivery [43]. Onpattro, an siRNA-loaded lipid

nanoparticle, represents the first FDA-approved RNAi therapeutic.

Immunotherapy enhancement through nanocarrier-delivered checkpoint inhibitors, tumor antigens, and immunostimulatory agents represents an emerging frontier. Nanoparticles co-delivering tumor antigens with adjuvants enhance dendritic cell activation and antitumor immune responses [44]. Photodynamic therapy and photothermal therapy employ light-activated nanocarriers that generate reactive oxygen species or hyperthermia for localized tumor destruction [45].

4.2. Infectious and Chronic Diseases

Antimicrobial nanomedicines address challenges in treating drug-resistant infections and intracellular pathogens. Liposomal amphotericin B (AmBisome) demonstrates superior safety profiles compared to conventional formulations in treating systemic fungal infections [46]. Nanocarriers enhance antibiotic delivery to biofilms and intracellular compartments harboring persistent bacteria [47]. Tuberculosis treatment benefits from nanoparticle-mediated drug delivery that targets alveolar macrophages and achieves sustained pulmonary concentrations [48].

Chronic inflammatory diseases including rheumatoid arthritis benefit from nanocarrier-mediated delivery of anti-inflammatory agents to inflamed joints. Surface modification with inflammation-targeting moieties enhances site-specific accumulation. Cardiovascular applications include nanoparticle-delivered anticoagulants, antiplatelet agents, and therapeutics targeting atherosclerotic plaques. Diabetes management employs glucose-responsive nanocarriers for insulin delivery that respond to blood glucose fluctuations. Central nervous system disorders present unique challenges due to blood-brain barrier impermeability to most therapeutics. Nanocarriers modified with brain-targeting ligands or designed to exploit endogenous transport systems enable brain drug delivery. Neurodegenerative disease treatment investigates nanoparticle-mediated delivery of neuroprotective agents and gene therapies.

5. Challenges and Future Perspectives

Despite remarkable advances, pharmaceutical nanotechnology faces substantial translational barriers. Manufacturing scalability and reproducibility remain critical challenges, as laboratory-scale synthesis methods often prove unsuitable for industrial production. Batch-to-batch variability in physicochemical properties affects biological performance and regulatory approval. Standardization of characterization methods and establishment of quality-by-design principles are essential for consistent manufacturing. Regulatory frameworks for nanomedicines continue evolving to address unique safety and efficacy considerations. Long-term biodistribution, accumulation in organs including liver and spleen, and potential toxicity from carrier materials require thorough investigation. Immunogenicity concerns,

particularly for repeated administrations, necessitate careful material selection and comprehensive preclinical evaluation. The accelerated blood clearance phenomenon following repeated PEGylated nanocarrier administration exemplifies unexpected immune responses.

Economic considerations including high development costs and complex manufacturing processes impact clinical translation. Cost-effectiveness analyses must demonstrate value propositions justifying premium pricing over conventional therapies. Intellectual property landscapes and patent complexities further complicate commercial development.

Future directions emphasize personalized nanomedicine approaches integrating patient-specific disease characteristics with tailored nanocarrier designs. Artificial intelligence and machine learning facilitate rational nanocarrier design by predicting structure-activity relationships and optimizing formulation parameters. Stimuli-responsive "smart" nanocarriers capable of multiple functionalities including imaging, therapy, and real-time monitoring represent next-generation platforms. Biomimetic nanocarriers employing cell membrane coatings or exosome-inspired designs leverage natural biological mechanisms for enhanced performance.

Integration of nanotechnology with emerging therapeutic modalities including CRISPR-based gene editing, CAR-T cell therapy, and mRNA therapeutics opens unprecedented opportunities. Lipid nanoparticles demonstrated remarkable success in COVID-19 mRNA vaccine delivery, validating platform potential and accelerating regulatory acceptance [61]. Extending these successes to therapeutic applications beyond vaccines represents a priority area.

Table 2: Advantages and Limitations of Nanotechnology-Based Drug Delivery Systems

Aspect	Advantages	Limitations
Drug Protection	Shields drugs from degradation; maintains stability; protects from enzymatic breakdown	Complex formulation requirements; potential drug-carrier interactions
Bioavailability	Enhanced solubility of hydrophobic drugs; improved absorption; prolonged circulation	Variable absorption depending on administration route; potential first-pass metabolism
Targeted Delivery	Site-specific accumulation; reduced off-target effects; enhanced therapeutic index	EPR effect variability; ligand binding specificity challenges; tumor heterogeneity
Controlled Release	Predictable kinetics; sustained therapeutic levels; reduced dosing frequency	Release rate affected by physiological conditions; potential burst release
Safety Profile	Reduced systemic toxicity; lower adverse effects; improved tolerability	Long-term accumulation concerns; potential carrier toxicity; immunogenicity
Therapeutic Efficacy	Enhanced drug loading; combination therapy; synergistic effects	Complexity of evaluating multi-component systems; variable patient responses
Manufacturing	Versatile design options; scalable for some platforms	High production costs; batch variability; quality control challenges
Clinical Translation	Proven concept with approved products; growing regulatory guidance	Lengthy development timelines; regulatory complexity; high failure rates
Administration Routes	Multiple delivery routes possible; patient convenience	Route-specific formulation requirements; stability concerns

6. Conclusion

Pharmaceutical nanotechnology has fundamentally transformed drug delivery by enabling unprecedented control over therapeutic agent behavior in biological systems. The diverse array of nanocarrier platforms including polymeric nanoparticles, liposomes, lipid nanoparticles, dendrimers, and emerging inorganic and carbon-based materials provides versatile tools for addressing varied pharmaceutical challenges. Sophisticated mechanisms governing controlled release kinetics, targeted delivery through passive and active strategies, and sustained therapeutic concentrations

exemplify the multifaceted capabilities of these systems. Clinical successes in oncology, infectious diseases, and emerging applications in chronic conditions validate the therapeutic potential of nanomedicine.

However, substantial challenges remain in translating promising laboratory findings to widespread clinical implementation. Manufacturing scalability, regulatory pathways, long-term safety evaluation, and economic considerations require continued attention. The integration of artificial intelligence-guided design, personalized medicine approaches, and biomimetic strategies represents promising

future directions. As exemplified by rapid development of lipid nanoparticle-based mRNA vaccines, pharmaceutical nanotechnology possesses remarkable potential to address urgent therapeutic needs when appropriate resources and collaborative efforts converge. Continued interdisciplinary research involving pharmaceutical scientists, clinicians, regulatory experts, and industry partners will be essential for realizing the full potential of nanotechnology-enabled drug delivery systems and improving patient outcomes across diverse disease states.

7. References

- Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. *J Nanobiotechnology*. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
- Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. *Nat Rev Drug Discov*. 2021;20(2):101-24. doi:10.1038/s41573-020-0090-8
- Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. *Nat Rev Cancer*. 2017;17(1):20-37.
- Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. *Pharm Ther*. 2017;42(12):742-55.
- Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. *Bioeng Transl Med*. 2019;4(3):e10143.
- Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. *J Adv Res*. 2019;15:1-18.
- Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. *Nat Biotechnol*. 2015;33(9):941-51.
- Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? *J Control Release*. 2016;244(Pt A):108-21.
- Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. *Nat Commun*. 2018;9(1):1410.
- Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. *Nat Mater*. 2013;12(11):991-1003.
- Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. *J Control Release*. 2012;161(2):505-22.
- Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. *Ther Deliv*. 2015;6(1):41-58.
- Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. *Chem Rev*. 2016;116(4):2602-63.
- Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. *Pharmaceutics*. 2017;9(4):53.
- Desai N, Trieu V, Yao Z, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. *Clin Cancer Res*. 2006;12(4):1317-24.
- Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. *Chem Rev*. 2018;118(14):6844-92.
- Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. *Pharmaceutics*. 2017;9(2):12.
- Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. *Front Pharmacol*. 2015;6:286.
- Barenholz Y. Doxil®—the first FDA-approved nano-drug: lessons learned. *J Control Release*. 2012;160(2):117-34.
- Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. *Eur J Pharm Biopharm*. 2000;50(1):161-77.
- Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. *Nanomedicine*. 2016;12(1):143-61.
- Caminade AM, Turrin CO. Dendrimers for drug delivery. *J Mater Chem B*. 2014;2(26):4055-66.
- Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. *Prog Polym Sci*. 2014;39(2):268-307.
- Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. *J Cell Physiol*. 2019;234(1):298-319.
- Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? *Chem Soc Rev*. 2022;51(13):5365-451.
- Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. *Chem Soc Rev*. 2009;38(6):1759-82. doi:10.1039/b806051g
- Siepmann J, Siepmann F. Mathematical modeling of drug delivery. *Int J Pharm*. 2008;364(2):328-43.
- Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. *Int J Pharm*. 2011;415(1-2):34-52.
- Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. *Acta Pol Pharm*. 2010;67(3):217-23.
- Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. *Chem Soc Rev*. 2016;45(5):1457-501.
- Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. *J Control Release*. 2000;65(1-2):271-84.
- Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. *J Control Release*. 2010;148(2):135-46.
- Low PS, Henne WA, Doornweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. *Acc Chem Res*. 2008;41(1):120-9.
- Bazak R, Houra M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. *J Cancer Res Clin Oncol*. 2015;141(5):769-84.
- Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. *Mol Pharm*. 2008;5(4):505-15.
- Parent M, Nouvel C, Koerber M, Sapin A, Maincent P, Boudier A. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. *J Control Release*. 2013;172(1):292-304.
- Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene

delivery. *Adv Drug Deliv Rev.* 2016;99(Pt A):28-51.

38. Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. *Adv Mater.* 2018;30(23):e1706759.

39. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. *Nat Nanotechnol.* 2007;2(12):751-60.

40. O'Brien ME, Wigler N, Inbar M, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl versus conventional doxorubicin for first-line treatment of metastatic breast cancer. *Ann Oncol.* 2004;15(3):440-9.

41. Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. *J Clin Oncol.* 2005;23(31):7794-803.

42. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. *Trends Pharmacol Sci.* 2009;30(11):592-9.

43. Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. *N Engl J Med.* 2018;379(1):11-21.

44. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. *Chem Rev.* 2015;115(19):11109-146.

45. Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. *Chem Rev.* 2015;115(4):1990-2042.

46. Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. *Drugs.* 2013;73(9):919-34.

47. Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. *Trends Biotechnol.* 2012;30(10):499-511.

48. Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. *Tuberculosis (Edinb).* 2005;85(4):227-34

How to Cite This Article

Hadrovic A. The Vranica Mountain in Bosnia and Herzegovina: Living in a sustainable way. *Int J Multidiscip Res Growth Eval.* 2025 Sep-Oct;6(5):718-758. doi:10.54660/IJMRGE.2025.6.5.718-758.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.